Abstract

Numerical integrations of the derivative nonlinear Schrödinger equation for Alfvén waves, supplemented by a weak dissipative term (originating from diffusion or Landau damping), with initial conditions in the form of a bright soliton with nonvanishing conditions at infinity (oblique soliton), reveal an interesting phenomenon of "quasicollapse": as the dissipation parameter is reduced, larger amplitudes are reached and smaller scales are created, but on an increasing time scale. This process involves an early bifurcation of the initial soliton toward a breather that is analyzed by means of a numerical inverse scattering technique. This evolution leads to the formation of persistent dark solitons that are only weakly affected when crossed by the decaying breather which has the form of either a localized structure or an extended wave packet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.