Abstract

Direct trajectory calculations have become increasingly popular in recent computational chemistry investigations. However, the exorbitant computational cost of ab initio trajectory calculations usually limits its application in mechanistic explorations. Recently, machine learning-based potential energy surface (ML-PES) provides a powerful strategy to circumvent the heavy computational cost and meanwhile maintain the required accuracy. Despite the appealing potential, constructing a robust ML-PES is still challenging since the training set of the PES should cover a broad enough configuration space. In this work, we demonstrate that when the concerned properties could be collected by the localized sampling of the configuration space, quasiclassical trajectory (QCT) calculations can be invoked to efficiently obtain locally accurate ML-PESs. We prove our concept with two model reactions: methyl migration of i-pentane cation and dimerization of cyclopentadiene. We found that the locally accurate ML-PESs are sufficiently robust for reproducing the static and dynamic features of the reactions, including the time-resolved free energy and entropy changes, and time gaps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.