Abstract

The paper investigates the asymptotic behavior of solutions to the 2 × 2 matrix factorization (Riemann-Hilbert) problem with rapidly oscillating off-diagonal elements and quadratic phase function. A new approach to study such problems based on the ideas of the stationary phase method and M. G. Krein’s theory is proposed. The problem is model for investigating the asymptotic behavior of solutions to factorization problems with several turning points. Power-order complete asymptotic expansions for solutions to the problem under consideration are found. These asymptotics are used to construct asymptotics for solutions to the Cauchy problem for the nonlinear Schrodinger equation at large times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.