Abstract

A phase-matched third-harmonic (TH) generation from multilayered metamaterials (MMs) with a third-order nonlinearity is numerically investigated in the ultrashort pulse regime. To overcome the phase-mismatch problem due to natural material dispersion, we propose a solution based on engineered dispersion provided by MMs with hyperbolic dispersion, i.e., with anisotropic materials possessing a positive and negative dielectric permittivity. We analyzed selected material choices and demonstrated quasibirefringent phase-matched conditions for TH conversion, which could be achieved by optimizing the fill-factor of metamaterials. We study the conversion efficiencies of transmitted and reflected TH pulses as a function of incident angles and input fundamental-frequency intensity; the maximum efficiencies are obtained for optimal incident angles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.