Abstract

In this work we investigate quasi-ballistic transport in nanowire field-effect transistors (NW-FETs) by addressing the 1D Boltzmann transport equation. First, we find its exact analytical solution for any potential profile within the constraint of dominant elastic scattering. Next, we calculate the I-V characteristics of the NW-FET, which differ from the Landauer expression for the inclusion of a transmission coefficient smaller than one. Our approach provides a methodology for the calculation of the transmission and backscattering coefficients directly from the scattering probabilities. These coefficients turn out to be functions of the ratio between the device length and a suitably-averaged momentum-relaxation distance. One of the main conclusions of the paper is that, so long as inelastic collisions are neglected, the so-called kT-layer plays no role in 1D devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.