Abstract

An iterative approach to solving an implicit integral relation for the electron distribution function in the base of a bipolar transistor is exploited to achieve a solution to the field-free Boltzmann transport equation. The method, which is based on one previously applied to Si homojunction transistors, is extended here to hetero- and homojunction transistors in the GaAs material system. This involves incorporating tunneling and reflection into the boundary condition for the injected flux at the emitter end of the quasineutral base, and considering anisotropic and inelastic scattering mechanisms. The ballistic, scattered, and reflected portions of the distribution are examined as the base width is reduced to values where quasiballistic transport is evident. Numerical results are presented for the carrier concentration and velocity profiles, and for the base transit time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.