Abstract
Optimization demands are ubiquitous in science and engineering. The key point is that the approach to tackle a complex optimization problem should not itself be difficult. Differential Evolution (DE) is such a simple method, and it is arguably a very powerful stochastic real-parameter algorithm for single-objective optimization. However, the performance of DE is highly dependent on control parameters and mutation strategies. Both tuning the control parameters and selecting the proper mutation strategy are still tedious but important tasks for users. In this paper, we proposed an enhanced structure for DE algorithm with less control parameters to be tuned. The crossover rate control parameter Cr is replaced by an automatically generated evolution matrix and the control parameter F can be renewed in an adaptive manner during the whole evolution. Moreover, an enhanced mutation strategy with time stamp mechanism is advanced as well in this paper. CEC2013 test suite for real-parameter single objective optimization is employed in the verification of the proposed algorithm. Experiment results show that our proposed algorithm is competitive with several well-known DE variants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.