Abstract

Large-scale ordered arrays with dense hot spots are highly desirable substrates for practical applications such as surface-enhanced Raman scattering (SERS). In the past decade, most work has focused on using lateral gaps between two metal structures. However, the strength and density of the generated hot spots are limited to a 2D arrangement of nanostructures. In this work, we present a novel quasi-3D nanoring cavity structure, which contains a nanoring and a nanopillar in a nanohole. The fabrication is based on nanosphere lithography incorporated with dry etching and gold coating. Gold nanostructures with one layer (nanohole), 2 layers (nanohole + nanodisc), and 3 layers (nanohole + nanoring + nanopillar) were successfully fabricated and compared. The SERS performance of the three-layered nanostructures is about two orders of magnitude higher than the others. Finite-difference time-domain (FDTD) simulations show that incorporating nanopillars and nanorings into a nanohole array not only significantly increases the density of the hot spots but also achieves stronger electromagnetic field enhancements compared to a nanohole array. The simple fabrication of multilayered quasi-3D nanostructures provides a large-area and highly efficient SERS substrates for biological and chemical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.