Abstract
Artificial neurons as the basic units of spiking neural network (SNN) have attracted increasing interest in energy-efficient neuromorphic computing. 2D transition metal dichalcogenide (TMD)-based devices have great potential for high-performance and low-power artificial neural devices, owing to their unique ion motion, interface engineering, and resistive switching behaviors. Although there are widespread applications of TMD-based artificial synapses in neural networks, TMD-based neurons are seldom reported due to the lack of bio-plausible multi-mechanisms to mimic leaking, integrating, and firing biological behaviors without external assistance. In this work, for the first time, a methodology is developed by introducing the hybrid effect of charge trapping (CT) and Schottky barrier (SB) in MoS2 FETs for barristor memory and one-transistor (1T) compact artificial neuron realization. By correlating the CT and SB processes, quasi-volatile and resistive switching behaviors are realized on the fabricated MoS2 FET and utilized to mimic the accumulating, leaking, and firing biological behaviors of neurons. Therefore, based on a single quasi-volatile CT-SB MoS2 barristor memory, a 1T compact neuron of the basic leaky-integral-and-fire (LIF) function is demonstrated without a peripheral circuit. Furthermore, a spiking neural network (SNN) based on the CT-SB MoS2 barristor neurons is simulated and implemented in pattern classification with high accuracy approaching 95.82%. This work provides a highly integrated and inherently low-energy implementation for neural networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.