Abstract

Skyrmions are particle-like topological entities in a continuous field that have an important role in various condensed matter systems, including two-dimensional electron gases exhibiting the quantum Hall effect, chiral ferromagnets and Bose-Einstein condensates. Here we show theoretically, with the aid of numerical methods, that a highly chiral nematic liquid crystal can accommodate a quasi-two-dimensional Skyrmion lattice as a thermodynamically stable state, when it is confined to a thin film between two parallel surfaces imposing normal alignment. A chiral nematic liquid crystal film can thus serve as a model Skyrmion system, allowing direct investigation of their structural properties by a variety of optical techniques at room temperatures that are less demanding than Skyrmion systems discussed previously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.