Abstract

MnBi2Te4(MBT) is a promising van der Waals layered antiferromagnetic (AF) topological insulator that combines a topologically non-trivial inverted Bi-Te band gap with ferromagnetic (FM) layers of Mn ions. We perform inelastic neutron scattering (INS) on co-aligned single crystals to study the magnetic interactions in MBT. Consistent with previous work, we find that the AF interlayer exchange coupling and uniaxial magnetic anisotropy have comparable strength, which supports metamagnetic transitions that allow access to different magnetic symmetries in applied fields. Modelling of the two-dimensional intralayer FM spin waves requires the introduction of long-range and competing Heisenberg FM and AF interactions, up to at least the seventh nearest-neighbor, and possess anomalous damping, especially near the Brillouin zone boundary. First-principles calculations of insulating MBT find that both interlayer and intralayer magnetic interactions are long-ranged. We discuss the potential roles that bulk $n$-type charger carriers and chemical disorder play in the magnetism of MBT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call