Abstract

The development of “fault-tolerant” quantum computers, unaffected by noise and decoherence, is one of the fundamental challenges in quantum technology. One of the approaches currently followed is the realization of “topologically protected” qubits which make use of quantum systems characterized by a degenerate ground state of composite particles, known as “non-Abelian anyons”, able to encode and manipulate quantum information in a non-local manner. In this paper, we discuss the potential of quasi-two-dimensional electron gas (q2DEG) at the interface between band insulating oxides, like LaAlO3 and SrTiO3, as an innovative technological platform for the realization of topological quantum systems. Being characterized by a unique combination of unconventional spin-orbit coupling, magnetism, and 2D-superconductivity, these systems naturally possess most of the fundamental characteristics needed for the realization of a topological superconductor. These properties can be widely tuned by electric field effect acting on the orbital splitting and occupation of the non-degenerate 3d xy and 3d xz, yz bands. The topological state in oxide q2DEGs quasi-one-dimensional nanochannels could be therefore suitably controlled, leading to conceptual new methods for the realization of a topological quantum electronics based on the tuning of the orbital degrees of freedom.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.