Abstract

The paper is devoted to investigating the quasi-synchronization issue of fractional-order multi-layer networks with mismatched parameters under delay-dependent impulsive feedback control. It is worth highlighting that fractional-order multi-layer networks with mismatched parameters, as the extension model for single-layer or two-layer ones, are constructed in this paper. Simultaneously, the intra-layer and inter-layer couplings are taken into consideration, which is more general and rarely considered in discussions of network synchronization. An extended fractional differential inequality with impulsive effects is given to establish the grounded framework and theory on the quasi-synchronization problem under delay-dependent impulsive feedback control. Moreover, in the light of the Lyapunov method and graph theory, two criteria for achieving the quasi-synchronization of fractional-order multi-layer networks with mismatched parameters are derived. Furthermore, exponential convergence rates as well as the bounds of quasi-synchronization errors are successfully deduced. Ultimately, the theoretical results are applied in a practical power system, and some illustrative examples are proposed to show the effectiveness of theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.