Abstract
Heat and moisture transport plays an important role in many engineering areas. In many sweat transport systems, such as clothing assembly, the moisture concentration (or sweat) is relative small and the air concentration reaches a steady state quickly. In this paper, a quasi-steady-state multi-component and multi-phase model for heat and moisture transport in porous textile materials with phase change is proposed. An analytic form of the air concentration is obtained in terms of the mixture gas (vapour and air) concentration and temperature. The new model is described in the form of a single-component flow with an extra air resistance (permeability), involving only the vapour concentration (or pressure), temperature and water content. The existence of the classical positive solutions of the corresponding steady-state model is proved. Two types of clothing assemblies are investigated numerically. The comparisons among the experimental measurements and numerical results of the fully dynamic model, the proposed quasi-steady-state model and steady-state model are also presented. Numerical results show that the proposed quasi-steady-state model is realistic and less complicated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.