Abstract

A quasi-steady scheme for the analysis of aerodynamic interaction between a propeller and a wing has been developed. The quasi-steady analysis uses a 3D steady vortex lattice method for the propeller and a 3D unsteady panel method for the wing. The aerodynamic coupling is represented by periodic loads, which are decomposed into harmonics and the harmonic amplitudes are found iteratively. Each stage of the iteration involves the solution of an isolated propeller or wing problem, the interaction being done through the Fourier transform of the induced velocity field. The propeller analysis code was validated by comparing the predicted velocity field about an isolated propeller with detailed laser Doppler velocimeter measurements, and the quasi-steady scheme by comparison with mean loads measured in a wing-propeller experiment. Comparisons have also been made among the fluctuating loads predicted by the present method, an unsteady panel scheme and a quasi-steady vortex lattice scheme

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call