Abstract

We study quasi-stationary distribution of the continuous-state branching process with competition introduced by Berestycki et al. (2018). This process is defined as the unique strong solution to a stochastic integral equation with jumps. An important example is the logistic branching process proposed by Lambert (2005). We establish the strong Feller property, trajectory Feller property, Lyapunov condition, weak Feller property and irreducibility, respectively. These properties together allow us to prove that if the competition is strong enough near +∞, then there is a unique quasi-stationary distribution, which attracts all initial distributions with exponential rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.