Abstract
Unusual convection flows were observed in stabilized pre-breakdown phase of the periodic-pulsed optical discharge (POD) called “quiet” POD. The discharge was a relatively weakly glowing plasma filament sustained by focused λ = 1.064 μm laser pulses with repetition rate of fr = 50÷100 kHz at the intensity several times below than that required for the optical breakdown to occur. No strong shock waves or irregular turbulence around the discharge were observed, in contrast to breakdown types of POD. Significant laser beam refraction measured in the beam cross-section behind the discharge zone was explained by the gas heating in the discharge up to 10 kK, providing high gradients of gas density and refraction index. Intense convective flow was detected on the schlieren images as thermal traces of the laser-induced gas streams flowing from the discharge zone, directed mainly normally to the optical axis. Repeated relaxation of the gas expanding after being rapidly heated by the laser pulse is proposed to explain the effect. The periodic-pulsed discharge located in the elongated beam waist generates an anisotropic heated region with gas streams and vortices, which may form the observed regular convective flow at the late stages of expanding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.