Abstract

A mode of brittle fracture is described which is fundamentally different from the rapid transgranular cleavage or intergranular decohesion that is usually associated with that term. It involves stress-induced diffusion of surface-adsorbed embrittling elements along grain boundaries, and it occurs by slow, step-wise crack growth, the rate of which can, in principle, be calculated from the knowledge of the relevant intergranular diffusion coefficient, the stress profile at the crack tip and the dependence of the stress for grain-boundary decohesion on the concentration of the embrittling element. This mode of fracture is postulated to be possible in any high-strength alloy with a low-melting-point element adsorbed on the surface if the applied stress is high enough. Known examples include the brittle type of stress-relief cracking in steels, tin-induced cracking of Cu-Sn alloys, oxygen-induced cracking of iron-, copper-, and nickel-based alloys, and the group of phenomena known as liquid-metal embrittlement and solid-metal embrittlement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call