Abstract

This paper investigates fault tolerance and dynamic voltage scaling (DVS) in hard real-time systems. The authors present quasi-static task scheduling algorithms that consist of offline components and online components. The offline components are designed the way they enable the online components to achieve energy savings by using the dynamic slack due to variations in task execution times and uncertainties in fault occurrences. The proposed schemes utilize a fault model that considers the effects of voltage scaling on transient fault rate. Simulation results based on real-life task sets and processor data sheets show that the proposed scheduling schemes achieve energy savings of up to 50% over the state-of-art low-energy offline scheduling techniques and incur negligible runtime overheads. A hard real-time real-life test bed has been developed allowing the validation of the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.