Abstract

Quasi static compressive response of crumb rubber-epoxy composites was examined by varying the crumb rubber composition (0, 10, 20 and 30 vol.%). All the composites, irrespective of the strain rates, depict elastic regions tailed by a wide plateau area that is credited with the densification of rubber particulates. Higher strains to failure of composites were revealed as compared with neat epoxy signifying higher energy absorption ability of constituents. The modulus of elasticity of composites was noted to be lower than neat epoxy specimens, irrespective of the strain rates. Irrespective of strain rates, the strength of all the composites were inferior to neat epoxy specimens. Energy absorption of EC-30 was higher compared to EC-20 and EC-10 and noted to be increased in the range of 6–14% for 0.1 mm/min strain rate while it increases in the range of 5–9% for 0.01 mm/min strain rate, respectively. Rubber-toughening mechanism was credited with the increase in energy absorption of composites. Higher energy absorption of composites was mainly due to higher strain realisation indicating more deformation ability. Fracture features of specimens were analysed by scanning electron microscope.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call