Abstract

Compressive behavior of additively manufactured bioactive glass (BAG) reinforced high density polyethylene (HDPE) composites under quasi static conditions (0.001, 0.01 and 0.1 s−1 strain rates) is investigated in this work. HDPE feedstock filaments with 5, 10 and 20 wt% of bioactive glass are extruded for fused filament fabrication (FFF) based 3D printing (3DP). Compressive properties are extracted from the stress–strain plots. Elastic modulus and yield strength of the samples increase with filler addition and strain rate. Energy absorption increases with increase in strain rate and BAG content. All the samples exhibit homogeneous ductile deformation with distinct barrelling effect without any visible cracks. Deformation and energy absorption behavior of the tested samples are investigated using micrography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call