Abstract

The combined effects of temperature and humidity, termed hygrothermal, are included in the deformation analysis of laminated composite cylindrical panels based on first-order shear deformation theory (FSDT). The panel is under transverse mechanical load, and both steady-state and transient hygrothermal loads are considered. The problem is solved using the minimum potential energy theorem for different boundary conditions. The moisture profile through the thickness is obtained by analytical solution of Fick diffusion equation. The dependency of moisture diffusion coefficient on temperature is considered and the material temperature is assumed to be the same as the environmental temperature. Using a semi-analytical approach, displacement field of the panel subjected to evaluated profile of moisture in a specific time and thermo-mechanical loads is obtained. The accuracy and validation of the present solution are demonstrated by solving numerical examples and comparing them with the results available in the literature. Furthermore, new results are presented and effects of various important parameters such as panel geometry, edge boundary conditions, lamination layups and imposed moisture conditions on the deformation of the composite cylindrical panel are studied. Solved examples demonstrate that higher length-to-arc and radius-to-thickness ratios result in increased deflection and amplify the influence of mechanical load compared to hygrothermal effects on the overall deformation of the panel. In most case studies, the hygroscopic deformation observed at one-tenth of the saturation time exceeded half of the deformation observed after the saturation time, which shows the importance of transient hygroscopic analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call