Abstract

This study investigates the crashworthiness performance of multi-walled (spiral) tubes fabricated by roll bending aluminium alloy sheets. Quasi-static axial crushing tests of specimens were first conducted, and then numerical models were built to simulate the tests using the explicit non-linear finite element code LS─DYNA. After the experimental validation of the numerical simulation, a new series of conventional (closed-section) circular tube models of the same axial length, mean diameter, and cross-sectional area as those of the corresponding spiral models were built for comparison. The deformation patterns of the spiral tubes were found to be virtually the same as those of the closed-section tubes and despite being substantially open-section shells, those with more than two spirals collapsed progressively for crushing lengths that corresponded to 2/3 of their axial length. Moreover, the specific energy absorption, the energy absorption per spiral and the crush force efficiency of the tubes examined improved with respect to the number of spirals reaching peak values for around three to four spirals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.