Abstract

Aluminum alloy matrix syntactic foams were produced by inert gas pressure infiltration. Four different alloys and ceramic hollow spheres were applied as matrix and filler material, respectively. The effects of the chemical composition of the matrix and the different heat-treatments are reported at different strain-rates and in compressive loadings. The higher strain rates were performed in a Split-Hopkinson pressure bar system. The results show that, the characteristic properties of the materials strongly depends on the chemical composition of the matrix and its heat-treatment condition. The compressive strength of the investigated foams showed a limited sensitivity to the strain rate, its effect was more pronounced in the case of the structural stiffness and fracture strain. The failure modes of the foams have explicit differences showing barreling and shearing in the case of quasi-static and high strain rate compression respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.