Abstract

Background Polymethylmethacrylate (PMMA) bone cement is extensively used in spinal procedures such as vertebroplasty and kyphoplasty, while its use in percutaneous cement discoplasty (PCD) is not yet widely spread. A main issue for both application sites, vertebra and disc, is the mismatch in stiffness between cement and bone, potentially resulting in adjacent vertebral fractures and adjacent segment disease. Tailoring the cement modulus using additives is hence an interesting strategy. However, there is a lack of data on the tensile and tension-compression fatigue properties of these cements, relevant to the newly researched indication of PCD. Method A commercial PMMA cement (VS) was modified with 12%vol of linoleic acid (VSLA) and tested for quasi-static tensile properties. Additionally, tension-compression fatigue testing with amplitudes ranging from +/-5MPa to +/-7MPa and +/-9MPa was performed, and a Weibull three-parameter curve fit was used to calculate the fatigue parameters. Results Quasi-static testing revealed a significant reduction in VSLA’s Young’s Modulus (E=581.1±126.4MPa) compared to the original cement (E=1478.1±202.9MPa). Similarly, the ultimate tensile stress decreased from 36.6±1.5MPa to 11.6±0.8MPa. Thus, VSLA offers improved compatibility with trabecular bone properties. Fatigue testing of VSLA revealed that as the stress amplitude increased the Weibull mean number decreased from 3591 to 272 and 91 cycles, respectively. In contrast, the base VS cement reached run-out at the highest stress amplitude. However, the lowest stress amplitude used exceeds the pressures recorded in the disc in vivo, and VSLA displayed a similar fatigue life range to that of the annulus fibrosis tissue. Conclusions While the relevance of fully reversed tension-compression fatigue testing can be debated for predicting cement performance in certain spinal applications, the results of this study can serve as a benchmark for comparison of low-modulus cements for the spine. Further investigations are necessary to assess the clinical feasibility and effectiveness of these cements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call