Abstract

Fracture analysis of sandwich beams with a viscoelastic interface crack under quasi-static and dynamic loading has been studied. Firstly, a three-parameter standard solid material model was employed to describe the viscoelasticity of the adhesive layer. And a novel interfacial fracture analysis model called three material media model was established, in which an interface crack was inserted in the viscoelastic layer. Secondly, a finite element procedure based on Rice J-integral and Kishimoto J-integral theories was used to analyze quasi-static and dynamic interface fracture behavior of the sandwich beam, respectively. Finally, the influence of viscoelastic adhesive layer on the quasi-static J-integral was discussed. In addition, comparison of quasi-static Rice J-integral with Kishimoto J-integral under various loading rates was carried out. The numerical results show that the oscillating characteristic of dynamic J-integral is more evident with shorter loading rise time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.