Abstract

The objective of this paper is to analyse the effect of centrifugal effects on thin-rimmed/-webbed gears. To this end, an original hybrid gear model is used, which combines lumped parameter elements, finite elements and condensed sub-structures along with a mortar-based mesh interface aiming at coupling mismatched models. It is shown that due to gear body flexibility, centrifugal effects can strongly modify geometry and, consequently, tooth load distributions at high speeds. The possibility to counterbalance these effects by introducing profile and lead modification is investigated. It is finally shown that for the effective tooth design, both thin-rimmed gear geometry and operating conditions must be accounted for.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.