Abstract

The gearboxes of machines generally operate under a time-varying state rather than under steady-state conditions. However, it is difficult to investigate the nonlinear dynamics of a time-varying gear system. A gear system model of a railway vehicle was proposed in consideration of its time-varying mesh stiffness, nonlinear backlash, transmission error, time-varying external excitation, and rail irregularity. To obtain the nonlinear behaviors of a time-varying stochastic gear system, a quasi-static analysis was performed to observe its doubling-periodic bifurcation, chaotic motion, and transition from a lower to a higher power periodic motion. Based on the energy comparison results, the time-varying stochastic gear system was degraded to a time-varying system to simplify the calculation. Furthermore, the nonlinear response of the time-varying system was computed using the Runge–Kutta method and was compared with the results of a quasi-static analysis that employed a short-time Fourier transform method. The results of the quasi-static analysis were consistent with the results of the time–frequency analysis for the time-varying gear system except for the result at 3180 r/min, which represented a short period wherein the process transitioned to chaos. Hence, the comparison demonstrates the applicability of the quasi-static analysis for the nonlinear behavior analysis of a time-varying stochastic system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.