Abstract

Multicomponent taut mooring lines are widely used to secure floating facilities to anchors embedded in the seabed to restrict motions. Optimal design of the mooring line system requires a realistic model of the combined performance of all segments of the mooring line, including the separate segments contained within both the water column and the soil column. This paper presents a two-dimensional quasi-static model, which can analyze mooring lines comprising multiple types of mooring lines or chains, taking into account the effects of ocean currents, soil resistance, and elastic elongation of mooring line. An example analysis is carried out to predict the responses of multicomponent mooring line during pretension and under service conditions. The example analysis puts special focus on conditions where the floating facility undergoes a series of motion away from its original position to assess the effect of the vertical offset is studied in detail. Finally, based on the presented model, the performances of different components of the mooring system are thoroughly investigated and some useful conclusions are drawn.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call