Abstract

Quasi-solid-state Zn-air batteries are usually limited to relatively low-rate ability (<10 mA cm−2), which is caused in part by sluggish oxygen electrocatalysis and unstable electrochemical interfaces. Here we present a high-rate and robust quasi-solid-state Zn-air battery enabled by atomically dispersed cobalt sites anchored on wrinkled nitrogen doped graphene as the air cathode and a polyacrylamide organohydrogel electrolyte with its hydrogen-bond network modified by the addition of dimethyl sulfoxide. This design enables a cycling current density of 100 mA cm−2 over 50 h at 25 °C. A low-temperature cycling stability of over 300 h (at 0.5 mA cm−2) with over 90% capacity retention at −60 °C and a broad temperature adaptability (−60 to 60 °C) are also demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.