Abstract

Lithium-Sulfur (Li-S) batteries stand out to be one of the most promising candidates to meet the current energy storage requirement, with its natural abundance of materials, high theoretical capacity of 1672 mAhg-1, high energy density of 2600 Whkg-1, and low cost and lower environmental impact. Sulfur itself (S8), Li2S2 and Li2S formed during the discharge process, are electrical insulators and hence reduce the active material utilization and the electronic conductivity of the cathode affecting the battery performance. Combining of Carbon Super P (SP) with sulfur in cathode formulation is used to overcome these issues. In Liquid electrolyte batteries, polysulfides formed while charging and discharging, easily dissolve in liquid electrolyte and the resulting polysulfide shuttling leads to poor coulombic efficiency and cyclability. Liquid electrolytes used in the conventional Li-S batteries are easy to flow and become flammable. Further, Lithium dendrites piercing through separator causing short circuit paths leads to safety concerns. Replacement of the liquid electrolyte by a solid-state electrolyte (SSE) proves to be a strategy to overcome above mentioned issues. Sulfide based solid electrolytes have received greater attention due to their higher ionic conductivity, compatible interface with sulfur-based cathodes, and lower grain boundary resistance. Novel Li6PS5F0.5Cl0.5 due to its remarkable ionic conductivity of 3.5 x 10-4 S cm-1 makes it an excellent candidate for use in a Li-S solid state battery. However, the interface between SSEs and cathodes has become a challenge to be addressed in all solid-state Li-S batteries due to the rigidity of the participating surfaces. A hybrid electrolyte containing of SSE coupled with a small amount of ionic liquid at the interface, has been employed to improve the interface contact of the SSE with the electrodes.Cathode formulation consisting of sulfur as the active material, Super P as the conductive carbon black, acetylene carbon black as conductive carbon additive, with water based carboxymethyl cellulose (CMC) solution and Styrene butadiene rubber (SBR) as the binder was successfully developed. Thermo gravimetric analysis (TGA) studies of the cathode were carried out by the thermo gravimetric analyzer TA 2050 under N2 gas flow of 100 ml/min. Cathode surface morphology was characterized using the Field emission gun scanning electron microscope (FEI), TESCAN scanning electron microscope with energy dispersive X-ray spectroscopy (EDAX). Using a solvent-based process, Li6PS5F0.5Cl0.5 and Li6PS5F0.5Cl2 SSE were synthesized via the introduction of LiF into the argyrodite crystal structure, which enhances both the ionic conductivity and interface-stabilizing properties of the SSE. Relevant Ionic Liquids (IL) were prepared using Lithium bis(trifluoromethyl sulfonyl)imide (LiTFSI) as salt, with premixed pyrrolidinium bis(trifluoromethyl sulfonyl)imide (PYR) as solvent and 1,3-dioxolane (DOL) as diluent.SP-S cathode with 0.70 mgcm-2 sulfur loading was punched into disks of 2.0 cm2. SSE was pressed into 150 mg pellets using a stainless-steel tank. During the assembly, SSE was wetted with total of 40 μl of IL (LiTFSI dissolved in PYR and DOL solution) from both ends using a micropipette. 2032 type coin cells of Quasi-solid-state Li-S batteries (QSSLSB) consisting of SP-S based composite cathodes, Li anodes and novel Li6PS5F0.5Cl0.5 SSE were tested with an ionic liquid wetting both electrode-SSE interfaces. All the QSSLSB were cycled at 30 °C between 1.0 V and 2.8 V using an 8 channel Arbin battery testing system.Effect of IL dilution, co-solvent amount, LiTFSI concentration and C rate at which the batteries are tested, were systematically studied and optimized to develop a QSSLSB with higher capacity retention and cyclability. Optimum batteries had initial discharge capacity >1100 mAh/g and discharge capacity >400 mAh/g after 100 cycles at the C rate of C/10 with a significant coulombic efficiency. 40 μl of LiTFSI (2M) dissolved in PYR:DOL(1:1) IL was found to be optimum for high performance QSSEBs with low sulfur loading of 0.7 mg/cm2. From the C rate performance study QSSEBs have shown improved stability with the higher current rates. Next, cathodes with higher sulfur loading were studied and for sulfur loading > 4 mgcm-2, initial discharge capacity >950 mAh/g and 400 mAh/g after 60 cycles at C/20 rate were achieved with 40 μl of IL consisting of LiTFSI (3M) dissolved in PYR:DOL(1:3) for the SSE Li6PS5F0.5Cl2. Further testing is underway to improve the performance at high C rate for higher loading by incorporating SSE in the cathode to realize QSSLSB with higher capacity with improved cycle retention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call