Abstract

This paper introduces the class of quasi score-driven (QSD) models. This new class inherits and extends the basic ideas behind the development of score-driven (SD) models and addresses a number of unsolved issues in the score literature. In particular, the new class of models (i) generalizes many existing models, including SD models, (ii) disconnects the updating equation from the log-likelihood implied by the conditional density of the observations, (iii) allows testing of the assumptions behind SD models that link the updating equation of the conditional moment to the conditional density, (iv) allows QML estimation of SD models, (v) and allows explanatory variables to enter the updating equation. We establish the asymptotic properties of the QLE, QMLE and MLE of the proposed QSD model as well as the likelihood ratio and Lagrange multiplier test statistics. The finite sample properties are studied by means of an extensive Monte Carlo study. Finally, we show the empirical relevance of QSD models to estimate the conditional variance of 400 US stocks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.