Abstract

With the whirlwind evolution of technology, the quantity of stored data within datasets is rapidly expanding. As a result, extracting crucial and relevant information from said datasets is a gruelling task. Feature selection is a critical preprocessing task for machine learning to reduce the excess data in a set. This research presents a novel quasi-reflection learning arithmetic optimization algorithm - firefly search, an enhanced version of the original arithmetic optimization algorithm. Quasi-reflection learning mechanism was implemented for enhancement of population diversity, while firefly algorithm metaheuristics were used to improve the exploitation abilities of the original arithmetic optimization algorithm. The aim of this wrapper-based method is to tackle a specific classification problem by selecting an optimal feature subset. The proposed algorithm is tested and compared with various well-known methods on ten unconstrained benchmark functions, then on twenty-one standard datasets gathered from the University of California, Irvine Repository and Arizona State University. Additionally, the proposed approach is applied to the Corona disease dataset. The experimental results verify the improvements of the presented method and their statistical significance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.