Abstract

Optical turbulence modeling and simulation are crucial for developing astronomical ground-based instruments, laser communication, laser metrology, or any application where light propagates through a turbulent medium. In the context of spectrum-based optical turbulence Monte-Carlo simulations, we present an alternative approach to the methods based on the fast Fourier transform (FFT) using a quasi-random frequency sampling heuristic. This approach provides complete control over the spectral information expressed in the simulated measurable without the drawbacks encountered with FFT-based methods such as high-frequency aliasing, low-frequency under-sampling, and static sampling statistics. The method’s heuristics, implementation, and an application example from the study of differential piston fluctuations are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.