Abstract
Abstract Let $M$ be a Carathéodory hyperbolic complex manifold. We show that $M$ supports a real-analytic bounded strictly plurisubharmonic function. If $M$ is also complete Kähler, we show that $M$ admits the Bergman metric. When $M$ is strongly Carathéodory hyperbolic and is the universal covering of a quasi-projective manifold $X$, the Bergman metric can be estimated in terms of a Poincaré-type metric on $X$. It is also proved that any quasi-projective (resp. projective) subvariety of $X$ is of log-general type (resp. general type), a result consistent with a conjecture of Lang.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.