Abstract
In this work, we propose a novel design rule of block-wise concatenated Bose-Chaudhuri-Hocquenghem (BC-BCH) codes for storage devices using multi-level per cell (MLC) NAND flash memories. BC-BCH codes designed in accordance with the proposed design rule are called quasi-primitive BC-BCH codes in which constituent BCH codes are deliberately chosen for their lengths to be as close to primitive BCH codes as possible. It will be shown that such quasi-primitive BC-BCH codes can achieve significant improvements of error-correcting capability over the existing BC-BCH codes when an iterative hard-decision based decoding (IHDD) is assumed. In addition, we propose a novel collaborative decoding algorithm which targets at resolving dominant error patterns associated with the IHDD. Error-rate performances of error-control systems with the proposed quasi-primitive BC-BCH and existing BC-BCH codes are compared. For more comprehensive performance comparisons, systems with a hypothetically long BCH code and a product code are also considered in the comparisons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.