Abstract

Quasi-periodic oscillations (QPOs) in the X-ray lightcurves of accreting neutron star and black hole binaries have been widely interpreted as being due to standing wave modes in accretion disks. These disks are thought to be highly turbulent due to the magnetorotational instability (MRI). We study wave excitation by MRI turbulence in the shearing box geometry. We demonstrate that axisymmetric sound waves and radial epicyclic motions driven by MRI turbulence give rise to narrow, distinct peaks in the temporal power spectrum. Inertial waves, on the other hand, do not give rise to distinct peaks which rise significantly above the continuum noise spectrum set by MRI turbulence, even when the fluid motions are projected onto the eigenfunctions of the modes. This is a serious problem for QPO models based on inertial waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.