Abstract

Shock waves in collisionless plasmas are among the most efficient particle accelerators in space. Shock reformation is a process important to plasma heating and acceleration, but direct observations of reformation at quasi‐parallel shocks have been lacking. Here, we investigate Earth's quasi‐parallel bow shock with observations by the four Magnetospheric Multiscale spacecraft. The multi‐spacecraft observations provide evidence of short large‐amplitude magnetic structures (SLAMS) causing reformation of the quasi‐parallel shock. We perform an ion‐kinetic Vlasiator simulation of the bow shock and show that SLAMS reforming the bow shock recreates the multi‐spacecraft measurements. This provides a method for identifying shock reformation in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.