Abstract

Recently, a great deal of attention has been paid to the concept of quasipure injectivity introduced by L. Fuchs as Problem 17 in [5]. An abelian group G is said to be quasi-pure-injective (q.p.i.) if every homomorphism from a pure subgroup of G to G can be lifted to an endomorphism of G. D. M. Arnold, B. O'Brien and J. D. Reid have succeeded in [1] to characterize torsion free q.p.i. of finite rank, whereas in [2] we solved the torsion case and in [3] we studied certain classes of infinite rank torsion free q.p.i. groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.