Abstract

In this study, we report the observation of quasi-ordering in spontaneously associated highly polar surface functional groups (CN) in the high-kpolymer dielectric, cyanoethyl pullulan, and its impact on the organic field-effect transistor (OFET) characteristics. We find that the association originates from CN⋯H–C–CN hydrogen bonding as confirmed by XPS, NEXAFS experiments and molecular simulations. The quasi-ordered surface dipoles preferentially induce vertically well-stacked local semiconductor molecular clusters during the initial deposition process, which then promote large-area layer-by-layer growth. By maintaining sufficient quasi-ordering, high transistor performance (μ ≈ 6.5 cm2 V−1 s−1, SS ≈ 0.062 V dec−1) is obtained under low driving voltages (−3 to −5 V), while breakup of the association at higher baking temperatures leads to a dramatic drop in μ by a factor of ∼10. Our results demonstrate that local quasi-ordering of polymeric surface dipoles, which has a significant effect on the initial semiconductor molecular growth, represents a novel and sensitive factor affecting OFET characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.