Abstract
Anisotropic adaptive methods based on a metric related to the Hessian of the solution are considered. We propose a metric targeted to the minimization of interpolation error gradient for a nonconforming linear finite element approximation of a given piecewise regular function on a polyhedral domain Ω of ℝ d , d ≥ 2. We also present an algorithm generating a sequence of asymptotically quasi-optimal meshes relative to such a nonconforming discretization and give numerical asymptotic behavior of the error reduction produced by the generated mesh
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.