Abstract

Very efficient power combining of solid-state millimeter-wave sources may be obtained through the application of quasi-optical resonators and monotfthic source arrays. Through the theory of reiterative wavebeams (beam modes) with application of the Lorentz reciprocity theorem, it is shown that planar source arrays containing 25 individual elements or more result in very efficient power transfer of energy from the source arrays to the fundamental wave-beam mode. It is further shown that for identical sources within a properly designed quasi-optical power combiner, the output power tends to increase much faster that number of source elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.