Abstract
The atomic structure of quasi one-dimensional (1D) van der Waals materials can be regarded as the stacking of atomic chains to form thin flakes or nanoribbons, which substantially differentiates them from typical two-dimensional (2D) layered materials and 1D nanotube/nanowire array. Here we present our studies on quasi 1D gold selenide (AuSe) that possesses highly anisotropic crystal structure, excellent electrical conductivity, giant magnetoresistance, and unusual reentrant metallic behavior. The low in-plane symmetry of AuSe gives rise to its high anisotropy of vibrational behavior. In contrast, quasi 1D AuSe exhibits high in-plane electrical conductivity along the directions of both atomic chains and perpendicular one, which can be understood as a result of strong interchain interaction. We found that AuSe exhibits a near quadratic nonsaturating giant magnetoresistance of 1841% with the magnetic field perpendicular to its in-plane. We also observe unusual reentrant metallic behavior, which is caused by the carrier mismatch in the multiband transport. Our works help to establish fundamental understandings on quasi 1D van der Waals semimetallic AuSe and identify it as a new candidate for exploring giant magnetoresistance and compensated semimetals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.