Abstract

We show that, assisted by the Peierls transition of lattice, as a quasi-one dimensional (Q1D) tight binding system, a Möbius molecular device can behave as a simple topological insulator. With the Peierls phase transition to form a domain wall, the solitonary zero modes exist as the ground state of this electron-phonon hybrid system, which is protected by the Z2 topology of the Möbius strip. The robustness of the ground state prevents these degenerate zero modes from their energy spectrum splitting caused by any perturbation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call