Abstract

AbstractTo research the performance of a solid fuel scramjet combustor, a solid fuel regression rate model was coupled into a quasi-one-dimensional flow equation, and so the flow parameters and fuel regression rate could be calculated together. According to the regression rate and the combustor diameter in the previous moment, the combustor diameter of the next moment could be obtained. The unsteady combustion and flow matter in the combustor was simplified into a steady calculation of every moment by solving the boundary condition at different moments independently. The numerical results were compared to actual experimental data from the literature, and they agreed well with the experiment. Taking the fuel/air ratio and Mach number as the optimization conditions, the initial size of the combustor could be obtained. On the basis of an optimized combustor, the relevant parameters’ variation rules were calculated and analyzed. It was found that during the working process, the combustor flow field could be k...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call