Abstract
In this work, the problem of the restoration of images corrupted by space invariant blur and noise is considered. This problem is ill-posed and regularization is required. The image restoration problem is formulated as a nonnegatively constrained minimization problem whose objective function depends on the statistical properties of the noise corrupting the observed image. The cases of Gaussian and Poisson noise are both considered. A Newton-like projection method with early stopping of the iterates is proposed as an iterative regularization method in order to determine a nonnegative approximation to the original image. A suitable approximation of the Hessian of the objective function is proposed for a fast solution of the Newton system. The results of the numerical experiments show the effectiveness of the method in computing a good solution in few iterations, when compared with some methods recently proposed as best performing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.