Abstract

The purpose of this paper is to mathematically investigate the formation of a plasma sheath near the surface of a ball-shaped material immersed in a bulk plasma, and to obtain qualitative information of such a plasma sheath layer. Specifically, we study existence and the quasi-neutral limit behavior of the stationary spherical symmetric solutions for the Euler–Poisson equations in a three-dimensional annular domain. We first propose a suitable condition on the velocity at the sheath edge, referred as to Bohm criterion for the annulus, and under this condition together with the constant Dirichlet boundary conditions for the potential, we show that there exists a unique stationary spherical symmetric solution. Moreover, we study the quasi-neutral limit behavior by establishing [Formula: see text] estimate of the difference of the solutions to the Euler–Poisson equations and its quasi-neutral limiting equations, incorporated with the correctors for the boundary layers. The quasi-neutral limit analysis employing the correctors and their pointwise estimates enables us to obtain detailed asymptotic behaviors including the convergence rates in [Formula: see text] and [Formula: see text] norms as well as the thickness of the boundary layers as a consequence of the pointwise estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.