Abstract

Robustness is the ability to resume reliable operation in the face of different types of perturbations. Analysis of how network structure achieves robustness enables one to understand and design cellular systems. It is typically true that all parameters simultaneously differ from their nominal values in vivo, but there have been few intelligible measures to estimate the robustness of a system's function to the uncertainty of all parameters. We propose a numerical and fast measure of a robust property to the uncertainty of all kinetic parameters, named quasi-multiparameter sensitivity (QMPS), which is defined as the sum of the squared magnitudes of single-parameter sensitivities. Despite its plain idea, it has hardly been employed in analysis of biological models. While QMPS is theoretically derived as a linear model, QMPS can be consistent with the expected variance simulated by the widely used Monte Carlo method in nonlinear biological models, when relatively small perturbations are given. To demonstrate the feasibility of QMPS, it is employed for numerical comparison to analyze the mechanism of how specific regulations generate robustness in typical biological models. QMPS characterizes the robustness much faster than the Monte Carlo method, thereby enabling the extensive search of a large parameter space to perform the numerical comparison between alternative or competing models. It provides a theoretical or quantitative insight to an understanding of how specific network structures are related to robustness. In circadian oscillators, a negative feedback loop with multiple phosphorylations is demonstrated to play a critical role in generating robust cycles to the uncertainty of multiple parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.