Abstract
AbstractFlexible Zn–air batteries (FZABs) have attracted more attention due to their high specific energy, excellent stability, and unique rechargeability. However, these batteries are limited by the low conductivity of the gel electrolytes used. Here a quasi‐liquid gel with ionic conductivity comparable to liquid electrolytes is presented. The gel pore structure is guided and modified in situ with large‐size silica to achieve clear and unbroken pores. The reduced skeleton structure leads to a significant increase in ionic conductivity to 562.6 mS cm−1, enabling a peak power density of 154 mW cm−2 and a cycle life of over 40 h with a low charge–discharge gap. The FZABs also exhibit a high lifetime and potential advantages in 10 mA cm−2 charge/discharge testing, and demonstrate excellent performance in practical applications. This study offers new possibilities for developing high‐performance quasi‐liquid gels and innovative concepts for FZABs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.