Abstract
The Ibragimov–Khasminskii theory established a scheme that gives asymptotic properties of the likelihood estimators through the convergence of the likelihood ratio random field. This scheme is extending to various nonlinear stochastic processes, combined with a polynomial type large deviation inequality proved for a general locally asymptotically quadratic quasi-likelihood random field. We give an overview of the quasi-likelihood analysis and its applications to ergodic/non-ergodic statistics for stochastic processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.